3.4.83 \(\int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx\) [383]

3.4.83.1 Optimal result
3.4.83.2 Mathematica [A] (verified)
3.4.83.3 Rubi [A] (verified)
3.4.83.4 Maple [A] (verified)
3.4.83.5 Fricas [F]
3.4.83.6 Sympy [F(-1)]
3.4.83.7 Maxima [F]
3.4.83.8 Giac [A] (verification not implemented)
3.4.83.9 Mupad [F(-1)]

3.4.83.1 Optimal result

Integrand size = 30, antiderivative size = 139 \[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=\frac {4 c^3 \cos (e+f x) \log (1+\sin (e+f x))}{f \sqrt {3+3 \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {3+3 \sin (e+f x)}}+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {3+3 \sin (e+f x)}} \]

output
1/2*c*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/f/(a+a*sin(f*x+e))^(1/2)+4*c^3*cos 
(f*x+e)*ln(1+sin(f*x+e))/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+2 
*c^2*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/f/(a+a*sin(f*x+e))^(1/2)
 
3.4.83.2 Mathematica [A] (verified)

Time = 12.22 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00 \[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {c^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^2 \left (\cos (2 (e+f x))-32 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+12 \sin (e+f x)\right ) \sqrt {c-c \sin (e+f x)}}{4 \sqrt {3} f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \sqrt {1+\sin (e+f x)}} \]

input
Integrate[(c - c*Sin[e + f*x])^(5/2)/Sqrt[3 + 3*Sin[e + f*x]],x]
 
output
-1/4*(c^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*(Cos 
[2*(e + f*x)] - 32*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]] + 12*Sin[e + f 
*x])*Sqrt[c - c*Sin[e + f*x]])/(Sqrt[3]*f*(Cos[(e + f*x)/2] - Sin[(e + f*x 
)/2])^5*Sqrt[1 + Sin[e + f*x]])
 
3.4.83.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 3219, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {a \sin (e+f x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {a \sin (e+f x)+a}}dx\)

\(\Big \downarrow \) 3219

\(\displaystyle 2 c \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 c \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3219

\(\displaystyle 2 c \left (2 c \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 c \left (2 c \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3216

\(\displaystyle 2 c \left (\frac {2 a c^2 \cos (e+f x) \int \frac {\cos (e+f x)}{\sin (e+f x) a+a}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 c \left (\frac {2 a c^2 \cos (e+f x) \int \frac {\cos (e+f x)}{\sin (e+f x) a+a}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3146

\(\displaystyle 2 c \left (\frac {2 c^2 \cos (e+f x) \int \frac {1}{\sin (e+f x) a+a}d(a \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 16

\(\displaystyle 2 c \left (\frac {2 c^2 \cos (e+f x) \log (a \sin (e+f x)+a)}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )+\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

input
Int[(c - c*Sin[e + f*x])^(5/2)/Sqrt[a + a*Sin[e + f*x]],x]
 
output
(c*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(2*f*Sqrt[a + a*Sin[e + f*x]]) 
 + 2*c*((2*c^2*Cos[e + f*x]*Log[a + a*Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + 
 f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (c*Cos[e + f*x]*Sqrt[c - c*Sin[e + f*x] 
])/(f*Sqrt[a + a*Sin[e + f*x]]))
 

3.4.83.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 
3.4.83.4 Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.75

method result size
default \(-\frac {\left (\cos ^{3}\left (f x +e \right )+\sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )-5 \left (\cos ^{2}\left (f x +e \right )\right )+6 \sin \left (f x +e \right ) \cos \left (f x +e \right )+8 \cos \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-16 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \cos \left (f x +e \right )+8 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \sin \left (f x +e \right )-16 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \sin \left (f x +e \right )-\cos \left (f x +e \right )+5 \sin \left (f x +e \right )+8 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-16 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+5\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{2}}{2 f \left (1+\cos \left (f x +e \right )-\sin \left (f x +e \right )\right ) \sqrt {a \left (\sin \left (f x +e \right )+1\right )}}\) \(243\)

input
int((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2/f*(cos(f*x+e)^3+sin(f*x+e)*cos(f*x+e)^2-5*cos(f*x+e)^2+6*sin(f*x+e)*c 
os(f*x+e)+8*cos(f*x+e)*ln(2/(cos(f*x+e)+1))-16*ln(-cot(f*x+e)+csc(f*x+e)+1 
)*cos(f*x+e)+8*ln(2/(cos(f*x+e)+1))*sin(f*x+e)-16*ln(-cot(f*x+e)+csc(f*x+e 
)+1)*sin(f*x+e)-cos(f*x+e)+5*sin(f*x+e)+8*ln(2/(cos(f*x+e)+1))-16*ln(-cot( 
f*x+e)+csc(f*x+e)+1)+5)*(-c*(sin(f*x+e)-1))^(1/2)*c^2/(1+cos(f*x+e)-sin(f* 
x+e))/(a*(sin(f*x+e)+1))^(1/2)
 
3.4.83.5 Fricas [F]

\[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

input
integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fric 
as")
 
output
integral(-(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2)*sqrt(-c*sin(f* 
x + e) + c)/sqrt(a*sin(f*x + e) + a), x)
 
3.4.83.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=\text {Timed out} \]

input
integrate((c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**(1/2),x)
 
output
Timed out
 
3.4.83.7 Maxima [F]

\[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

input
integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxi 
ma")
 
output
integrate((-c*sin(f*x + e) + c)^(5/2)/sqrt(a*sin(f*x + e) + a), x)
 
3.4.83.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.92 \[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {2 \, \sqrt {a} c^{\frac {5}{2}} {\left (\frac {a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 2 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{a^{2}} + \frac {2 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{f} \]

input
integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac 
")
 
output
-2*sqrt(a)*c^(5/2)*((a*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1 
/2*f*x + 1/2*e)^4 + 2*a*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 
1/2*f*x + 1/2*e)^2)/a^2 + 2*log(-sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a* 
sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/ 
f
 
3.4.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c-c \sin (e+f x))^{5/2}}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int \frac {{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \]

input
int((c - c*sin(e + f*x))^(5/2)/(a + a*sin(e + f*x))^(1/2),x)
 
output
int((c - c*sin(e + f*x))^(5/2)/(a + a*sin(e + f*x))^(1/2), x)